22 research outputs found

    Recent Advances on Modeling the Lateral Flow Immunoassay

    Get PDF
    The rapid immunochromatographic test strip, also called lateral flow immunoassay (LFIA), has recently attracted considerable research attention in the past decade because of its advantages when applied to a wide variety of point-of-care (POC) tests. This paper reviewed recent advances on modeling the LFIA and summarized their advantages and limitations. It is worth mentioning that there is a growing research interest on the general modeling issue for the LFIA system. In order to optimize LFIA performance for the purpose of quantification, it is of great importance to develop a mathematical model that allows us to simulate dynamic characteristics and also find out the effects of various design parameters in a both rapid and inexpensive way

    Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach

    Get PDF
    "(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time

    Patient-Specific Coronary Artery 3D Printing Based on Intravascular Optical Coherence Tomography and Coronary Angiography

    Get PDF
    Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures

    A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay

    Get PDF
    In this paper, the parameter identification problem of the lateral flow immunoassay (LFIA) devices is investigated via a new switching delayed particle swarm optimization (SDPSO) algorithm. By evaluating an evolutionary factor in each generation, the velocity of the particle can adaptively adjust the model according to a Markov chain in the proposed SDPSO method. During the iteration process, the SDPSO can adaptively select the inertia weight, acceleration coefficients, locally best particle pbest and globally best particle gbest in the swarm. It is worth highlighting that the pbest and the gbest can be randomly selected from the corresponding values in the previous iteration. That is, the delayed information of the pbest and the gbest can be exploited to update the particle’s velocity in current iteration according to the evolutionary states. The strategy can not only improve the global search but also enhance the possibility of eventually reaching the gbest. The superiority of the proposed SDPSO is evaluated on a series of unimodal and multimodal benchmark functions. Results demonstrate that the novel SDPSO algorithm outperforms some well-known PSO algorithms in aspects of global search and efficiency of convergence. Finally, the novel SDPSO is successfully exploited to estimate the unknown time-delay parameters of a class of nonlinear state-space LFIA model.This work was supported in part by the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of China under Grant 61403319, the Fujian Natural Science Foundation under Grant 2015J05131, and the Fujian Provincial Key Laboratory of Eco-Industrial Green Technology

    A novel neural network approach to cDNA microarray image segmentation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(®) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.This work was funded in part by the National Natural Science Foundation of China under Grants 61174136 and 61104041, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the International Science and Technology Cooperation Project of China under Grant No. 2011DFA12910, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Predicting Ion Channels Genes and Their Types With Machine Learning Techniques

    Get PDF
    Motivation: The number of ion channels is increasing rapidly. As many of them are associated with diseases, they are the targets of more than 700 drugs. The discovery of new ion channels is facilitated by computational methods that predict ion channels and their types from protein sequences.Methods: We used the SVMProt and the k-skip-n-gram methods to extract the feature vectors of ion channels, and obtained 188- and 400-dimensional features, respectively. The 188- and 400-dimensional features were combined to obtain 588-dimensional features. We then employed the maximum-relevance-maximum-distance method to reduce the dimensions of the 588-dimensional features. Finally, the support vector machine and random forest methods were used to build the prediction models to evaluate the classification effect.Results: Different methods were employed to extract various feature vectors, and after effective dimensionality reduction, different classifiers were used to classify the ion channels. We extracted the ion channel data from the Universal Protein Resource (UniProt, http://www.uniprot.org/) and Ligand-Gated Ion Channel databases (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), and then verified the performance of the classifiers after screening. The findings of this study could inform the research and development of drugs

    Enhanced CNN Classification Capability for Small Rice Disease Datasets Using Progressive WGAN-GP: Algorithms and Applications

    No full text
    An enhancement generator model with a progressive Wasserstein generative adversarial network and gradient penalized (PWGAN-GP) is proposed to solve the problem of low recognition accuracy caused by the lack of rice disease image samples in training CNNs. First, the generator model uses the progressive training method to improve the resolution of the generated samples step by step to reduce the difficulty of training. Second, to measure the similarity distance accurately between samples, a loss function is added to the discriminator that makes the generated samples more stable and realistic. Finally, the enhanced image datasets of three rice diseases are used for the training and testing of typical CNN models. The experimental results show that the proposed PWGAN-GP has the lowest FID score of 67.12 compared with WGAN, DCGAN, and WGAN-GP. In training VGG-16, GoogLeNet, and ResNet-50 with PWGAN-GP using generated samples, the accuracy increased by 10.44%, 12.38%, and 13.19%, respectively. PWGAN-GP increased by 4.29%, 4.61%, and 3.96%, respectively, for three CNN models over the traditional image data augmentation (TIDA) method. Through comparative analysis, the best model for identifying rice disease is ResNet-50 with PWGAN-GP in X2 enhancement intensity, and the average accuracy achieved was 98.14%. These results proved that the PWGAN-GP method could effectively improve the classification ability of CNNs

    A Novel Particle Swarm Optimization Approach for Patient Clustering From Emergency Departments

    No full text

    Stress Optimization of Vent Holes with Different Shapes Using Efficient Switching Delayed PSO Algorithm

    No full text
    An effective integrated design optimization method is developed to reduce the maximum von Mises stress around vent holes of a high-pressure turbine sealing disk. It mainly includes four different shape designs (circular, elliptical, race-track, and four-arc) for holes, an updated self-developed modelling and meshing tool, an APDL-based strength analysis, and a self-proposed efficient switching delayed particle swarm optimization (SDPSO) algorithm. The main idea of SDPSO is: (1) by evaluating an evolutionary factor and utilizing a probability transition matrix, a non-homogeneous Markov chain is determined and auto-updated in each generation; (2) the evolutionary factor and the Markov chain are used to adaptively select the inertia weight, acceleration coefficients, and delayed information to adjust the particle’s velocity. The performance of SDPSO is evaluated through two benchmark optimization problems with constraints. The results show that SDPSO is superior to two well-known PSO algorithms in optimization capability, numerical robustness, and convergence speed. Furthermore, SDPSO is used for the stress optimization of vent holes with four different shapes. The results show that: (1) SDPSO is suitable and valuable for practical engineering optimization problems with constraints; (2) the developed integrated design optimization method is effective and advanced for reducing the maximum von Mises stress around the vent holes; and (3) the four-arc hole has more tremendous advantages in reducing the maximum von Mises stress, followed by the elliptical hole, the race-track hole, and the circular hole
    corecore